ADOBE’ INTRODUCTIONTO
SCRIPTING

A JETSET | 2 F.\\

CCCCCCCCCCCCCCCCCCCCCCCCC

© Copyright 2009 Adobe Systems Incorporated. All rights reserved.
Adobe” Introduction to Scripting

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication
(whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated.
The software described in this document is furnished under license and may only be used or copied in accordance with
the terms of such license.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this
publication, and expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and
non-infringement of third-party rights.

Any references to company names in sample templates are for demonstration purposes only and are not intended to
refer to any actual organization.

Adobe”, the Adobe logo, lllustrator’, InDesign”, and Photoshop are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

Apple®, Mac OS’, and Macintosh” are trademarks of Apple Computer, Inc,, registered in the United States and other
countries. Microsoft , and Windows" are either registered trademarks or trademarks of Microsoft Corporation in the
United States and other countries. JavaScript™ and all Java-related marks are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark of The Open Group.

All other trademarks are the property of their respective owners.

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such license.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under copyright law
even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Contents

1 INtroductioncoviiiiiiiiiiiiiiieeeeeeeeesessssssccccccssssssasassssss D
Isscripting hard 10 l@arn?o e e e e 5
WY USE SCIIDEING? ettt ettt e et ettt e e e ettt e 5
How do | know when to use scripting?oiiiiiiiini it 5
What about aCtions Or MACIOS?ttt ettt ettt e et enaens 5
What exactly is SCripting?ottt ettt e e 6

Yo o] 1= ol T | 6
L7235 o) PP 6
JAVAS Dt o e e 6
HOW Ao I bEgiNg ..o e e e e e e et e 7
A e 7
JS e 8
VB et e 8

2 Scripting BasiCs c..cvviiiiiiiiietriicnecetncscssccssccsssccsscccssccsscasse 9
The building blocks of SCriptingo et e 9
Understanding objects, properties, methods,and commandsccvviiene.. 9
LU YT To T o 1ot {3 9

D10]| @] g Vo= o) -3 AP 9
Variables ... e 10

Object references makelifebetter ... 11

Variables provide a nice shortcutcoiiiiii it i 12

Naming variables 12

Object collections or elements as object referencesc.coiviiiiiiiiiiiiinn... 13

How elements and collections number subsequentitems 14

Referring to the current or activeobjectooiiiiiin i 14

L0 [T oo o 1< a1 = A 16
A 17

IS e 18

VB e 18

Understanding read-only and read-write propertiesc.cvuviiiiiiininenennan.. 19

Using alert boxes to show a property’svalueccooiviiiiiiiia.. 19

Constant values and enNUMErationso.iuiuininientin i ia i neaenenenens 20

A 21

JS 21

MBS e e 22

Using variables for property valuesot 22

Using methods Oor COmMmMandso.uitiiiiii e e e et e e i e e 23
Command or method parametersouiiriiiii ittt iaeanns 23
Required parametersiuiiiitii e e e e 23

Multiple parameters ...t e e e 24

Tell statements (AS ONlY) ... u it e e e e e 25

Contents

4
Notes about variables e e 26
Changing avariable’'svalueo e 26
Using variables to refer to existing objects ..., 27
Making scriptfilesreadableo i e 27
CommeNnting the Pt . ..o e e e e e e 27
Continuing long lines in AppleScriptand VBSCriptc.coiiiiiiiiiiniiiiniiiinen.. 28
L8 e 1 £ - 72 P 29
(@ T 1T o N o] o] =Tt £ 29
More information about sCriptingc.vuini i e e 30

Finding an Object’s Propertiesand Methodscciivevviiiieeenneas 31

Using scripting environmMeNnt BroOWSErsoun ittt et e e eaens 31
AppleScript data dictionariesouiuiiiiriii i e 31
Displaying the AppleScript dictionariesc.coiiiiiiiiiiiiinenn... 31

Using the AppleScript dictionaries..........cooiiiiiiiii it 31

JavaScript object-model viewer e 33
VBSCript type liDrariesot e e e e 33
Displaying the VBScript type libraries ...t 34

Using the VBScripttype libraries ... i 34

Using Adobe scripting reference documentsouinini ittt i ia et 38
Working with an object’s elements table (ASonly)coiiiiiiiiiiiii i, 38
Working with an object’s propertiestable ... 39
Working with an object’'s methodstableo o i 41

Advanced Scripting Techniquesccciiiiiieiiiiieerrnrecccsssscccesees 43

CoNditioNal STATEMENTS ..ottt ettt e e 43
1KY = 1 (<) 0 =Y 0] £ 43
I @ISE STAtEMIENTS .ttt e 44
o T o1 45
More information about sCriptingo.ouini i e e 46

Troubleshootingccoiiiiiiiiiiiiiirrniieeeennesscsssncsccssnccccenee 47

ReSErVEd WOIAS ..ottt e 47
AppleScript Script EJitor error Messagesttt e 47
ESTK @I Or MESSAGES .ottt ittt ettt et et ettt et e e 48
VB SCriPt ITOr MESSAGES . .o ettt ettt ettt e et e et e et et e e e 49

Bibliographycciiiiiiiiiiiiiieeeeereesssssscscccsssssscccssssssss 50

Y o o LYol T o 1 PP 50
JaVA S Pt - et e e 50
L7535 o) T 50

1 Lo =) - 1

Introduction

Scripting is a powerful tool that can be used to control and automate many features of many Adobe®
applications—saving you so much time and effort that it can completely change the way you approach
your work.

Scripting is not programming. You do not need a degree in computer science or mathematics to write
basic scripts that automate a wide variety of common tasks.

Each scripting item corresponds to a tool or a palette or menu item in an Adobe application. In other
words, each scripting element is something you already know through your Adobe expertise. If you know
what you'd like your Adobe applications to do, you can easily learn to write scripts.

Your work is characterized by creativity, but many of the actual hands-on tasks are anything but creative.
Most likely, you spend a lot of time doing the same or similar procedures over and over again.

Wouldn't it be great to have an assistant—one that happily does the mind-numbing tasks, follows your
instructions with perfect and predictable consistency, is available any time you need help, works at
lightning speed, and never even sends an invoice?

Scripting can be that assistant. With a small investment of time, you can learn to script the simple but
repetitive tasks that eat up your time. However, while it’s easy to get started, modern scripting languages
provide the necessary depth to handle very sophisticated jobs. As your scripting skills grow, you may move
on to more complex scripts that work all night while you're sleeping.

Think about your work—is there a repetitive task that’s driving you crazy? If so, you've identified a
candidate for a script. Next, you simply figure out:

» What are the steps involved in performing the task?
» What are the conditions in which you need to do the task?

Once you understand the process you go through to perform the task manually, you are ready to turn it
into a script.

If you have used Actions or written macros, you have some idea of the efficiency of using scripts. But
scripting goes beyond the capability of Actions or macros by allowing you to manipulate multiple
documents and multiple applications in a single script. For example, you can write a script that
manipulates an image in Adobe Photoshop® software and then tells Adobe InDesign® software to
incorporate the image.

CHAPTER 1: Introduction What exactly is scripting? 6

Additionally, your script can very cleverly get and respond to information. For example, you may have a
document that contains photos of varying sizes. You can write a script that figures out the size of each
photo and creates a different colored border based on the size, so that icons have blue borders, small
illustrations have green borders, and half-page pictures have silver borders.

If you like using Actions, keep in mind that your script can execute Actions within the application.

A script is a series of statements that tells an application to perform a set of tasks.

The trick is writing the statements in a language that the applications understand. Scriptable Adobe
applications support several scripting languages.

If you work in Mac OS’, your choices are:

» AppleScript

» JavaScript

If you work in Windows", your choices are:

» VBScript (Visual Basic and VBA will also work)
» JavaScript

The brief descriptions below can help you decide which language will work best for you.

AppleScript is a “plain language” scripting language developed by Apple. It is considered one of the
simplest scripting languages to use.

To write AppleScript scripts, you can use Apple’s Script Editor application, which, in a default Mac OS
installation, is located at:

system drive:Applications:AppleScript:Script Editor

For information about using the Script Editor, see the Script Editor Help.

VBScript is a scaled-down version of the Visual Basic programming language developed by Microsoft.
VBScript talks to host applications using ActiveX Scripting. While VBScript is the Visual Basic language
version officially supported by CS5, you can also write scripts in VBA and Visual Basic itself.

You can find several good VBScript editors on the Internet. If you have any Microsoft Office applications,
you can also use the built in Visual Basic editor by selecting Tools > Macro > Visual Basic Editor.

JavaScript is a very common scripting language developed originally to make Web pages interactive. Like
AppleScript, JavaScript is easy to learn.

CHAPTER 1: Introduction How do | begin? 7

NoTE : Adobe has developed an extended version of JavaScript, called ExtendScript, that allows you to
take advantage of certain Adobe tools and scripting features. As a beginner, the difference between these
two languages will not affect you. However, you should get in the habit of giving your JavaScript scripts a
. jsx extension, rather than the usual . js extension.

JavaScript has some small advantages over AppleScript and Visual Basic:

» Your scripts can be used in either Windows or Mac OS. If there is a chance you'll want to share or use
your scripts on both platforms, you should learn to use JavaScript.

» In Adobe lllustrator® software and InDesign, you can access scripts in any of the supported languages
from within the application. However, in Photoshop, you can access only . jsx files from within the
application. You must run AppleScript or Visual Basic scripts from outside the application. This is not a
major drawback, but it does require a few extra mouse clicks to run your scripts.

> You cansetup .jsx scripts to run automatically when you open the application by placing the scripts
in the application’s Startup Scripts folder. For information on startup-script folders, see the scripting
guide for your application.

To write scripts in JavaScript, you can use any text editor, or you can use the ESTK (ExtendScript Tool Kit)
provided with your Adobe applications. The ESTK has many features that make it easier to use than a text
editor, including a built-in syntax checker that identifies where the problems are in your script and tries to
explain how to fix them, and the ability to run your scripts right from the ESTK without saving the file. This
second feature can save you a lot of time, especially in the beginning when you may have to test and edit a
script more than a few times to get it to work.

In a default Adobe installation, the ESTK is in the following location:
Mac OS: systemdrive:Applications:Utilities:Adobe Utilities - CS5:ExtendScript Toolkit CS5
Windows: drive: /Program Files/Adobe/Adobe Utilities - CS5/ExtendScript Toolkit CS5

For details, see the JavaScript Tools Guide.

It's time to write your first script.

Norte: If you have problems running your script, see Chapter 5, “Troubleshooting.”

1. Open the Script Editor and type the following (substituting any Adobe application name in the
quotes):

tell application "Adobe Photoshop CS5"
make document

end tell

2. Press Run.

CHAPTER 1: Introduction How do | begin? 8

1. Open the ESTK and select an application from the drop-down list in the upper left corner of a
document window.

2. In the JavaScript Console palette, type the following:

app .documents.add ()

3. Do any of the following:

» Click the Run icon in the toolbar at the top of the Document window.
» PressF5.

» Choose Debug -> Run.

1. In atext editor, type the following (substituting any Adobe application in the quotes in the second
line):

Set appRef = CreateObject ("Photoshop.Application")
appRef .Documents.Add ()

2. Save thefile as a text file with a . vbs extension (for example, create doc.vbs).

3. Double-click the file in Windows Explorer.

Scripting Basics

This chapter covers the basic concepts of scripting in both Windows and Mac OS. For product-specific
directions, see the scripting guide for your Adobe application.

Your first script, which created a new document, was constructed like an English sentence, with a noun
(document) and a verb (make in AS, add () in JS, and add in VBS). In scripting, a noun is called an object, and
averb is called a command (in AS) or a method (in JS and VBS).

Just as you can modify a noun using adjectives, you can modify a script object using properties. To modify
a command or method, you use parameters.

When you use an Adobe application, you open a file or document, and then, within the document, you
create or manipulate layers, text, frames, channels, graphic lines, colors, and other design elements. These
things are objects.

To create a script statement, you create an object or refer to an existing object, and then you do one of the
following:

» Define values for the object’s properties. For example, you can specify a document’s name, height, or
width. You can specify a layer’s name, color, or opacity.

» Specify commands or methods that tell the script to do what to your objects. For example, you can
open, close, save, and print a document. You can merge, move, or rasterize a layer.

The thing to remember when writing a script is that you can use only the properties or
methods/commands that are allowed for the object. How do you know which properties and methods go
with which object? For the most part, it's logical. Generally, if you can specify something in your Adobe
application, you can specify it in a script.

However, Adobe also spells it out for you in great detail in scripting resources that contain the information
you need to create, define, and manipulate scripting objects. For information on locating and using these
resources, see Chapter 3, “Finding an Object’s Properties and Methods.”

The main concept to understand when using objects in scripts is how to refer to an object. How do you let
the application know which object you want your script to change? In the application’s user interface, you
can simply select the object by clicking it. In a script, there’s a little bit more to it.

Scripting languages use something called a Document Object Model (DOM) to organize objects in a way
that makes the objects easy to identify. The principle behind a DOM is the containment hierarchy. In other

CHAPTER 2: Scripting Basics Using Objects 10

AS

JS

VBS

words, top level objects contain next level objects, which contain the subsequent level of objects, and so
on.

For example, the top level object in any Adobe application DOM is the application object. Next is the
document object, which contains all other objects, such as layers, channels, pages, text frames, and so on.
These objects can contain objects that the document cannot contain directly. For example, in InDesign or
lllustrator, a text frame can contain words. A document cannot contain words unless it has a text frame.
Similarly, in Photoshop, a document can contain a layer, and a layer can contain a text frame, but a
document cannot contain a text frame unless the document contains a layer.

NoOTE: An object’s containing object is also called its parent object.

In your first script, you first named the application object (or selected it in the ESTK), and then you created
the document within that application. If, as your next step, you wanted to create a layer, your script would
need to identify the document in which you want to create the layer. If your script does not tell the
application exactly where to create an object, your script fails.

NoTE: To view a chart of the DOM for a specific application, please refer to the application’s scripting guide.

So, using your DOM principle, how would you add a layer in a document? (To modify this script for
Photoshop, please note that a layer is called art l1ayer in AS; and layers are called artLayers in JS or
ArtLayers in VBS).

tell application "Adobe Illustrator CS5"
make document

make layer in document
end tell

app.documents.layers.add()

Set appRef = CreateObject("Illustrator.Application")
docRef .Documents.Add
appRef .Documents.Layers.Add

If you try to run these scripts, you get an error because the application does not know which document
you mean. Sure, you have only one document open, but that won’t always be the case. Therefore, scripting
languages have strict requirements that all objects be explicitly identified in every script statement.

This guide introduces three ways to refer to objects:
» Variables
» Collection or element numbers

» The “current” object or “active” object property

A variable is a thing that you create to hold data in your script. The data, called the variable’s value, can be
an object in your script, or it can be a property that describes an object. You could almost think of a
variable as a nickname that you give to an object or other data.

Using a variable to contain an object makes an object easy to refer to. Most scripters create a variable for
each object in their script.

CHAPTER 2: Scripting Basics Using Objects 11

AS

JS

VBS

AS

JS

VBS

The following scripts create a document, just as you did in your first script. However, this version of the
script creates a variable named myDoc to contain the document. Take a look at these scripts, and then
compare them to your first script. (See “How do | begin?” on page 7.)

To create a variable in AS, you use the command set, followed by the variable name. To assign a data value
to the variable, you use to followed by the value.

tell application "Adobe Illustrator CS5"
set myDoc to make document
end tell

To create a variable in JS, you use var, followed by the variable name. To assign a data value, you use an
equal sign (=) followed by the value. Spaces do not matter on either side of the equal sign.

var myDoc = app.documents.add ()

To create a variable in VBS, you use the command set, followed by the variable name. To assign a data
value, you use an equal sign (=) followed by the value. Spaces do not matter on either side of the equal
sign.

Set appRef = CreateObject("Illustrator.Application")
Set docRef = appRef.Documents.Add

Object references make life better

Now that you have a way to refer to the document object created in the script, it's easy to add the layer. (To
modify this script for Photoshop, note that a layer is called art 1ayer in AS; and layers are called
artLayers in JS or ArtLayers in VBS).

tell application "Adobe Illustrator CS5"
set myDoc to make document
make layer in myDoc

end tell

Even better, we could create another variable to hold the layer. That would allow us to easily refer to the
layer if we wanted to define its properties or add an object to the layer.

tell application "Adobe Illustrator CS5"
set myDoc to make document
set myLayer to make layer in myDoc
end tell

var myDoc = app.documents.add ()
myDoc. layers.add ()

The same script again, this time creating a variable to hold the layer.

var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add()

Set appRef = CreateObject("Illustrator.Application")
Set docRef = appRef.Documents.Add
docRef .Layers.Add

The same script again, this time creating a variable to hold the layer.

Set appRef = CreateObject ("Photoshop.Application")

CHAPTER 2: Scripting Basics Using Objects 12

AS

JS

VBS

Set docRef = appRef.Documents.Add
Set layerRef = docRef.Layers.Add

Variables provide a nice shortcut

Variables that hold objects also hold the entire containment hierarchy that identifies the object. For
example, to refer to myLayer, you do not need to refer to the document that contains the layer. The
following scripts create a text frame in myLayer. Notice that, when you use myLayer, you don't need to
provide any containment hierarchy information about the layer.

NorTE: The following script uses the contents property to add text to the frame. For now, don’t worry
about the mechanics of using properties.

The following script uses objects and properties defined in the Illustrator CS5 object model, so it does not
work, for example, in InDesign or Photoshop.

tell application "Adobe Illustrator CS5"
set myDoc to make document
set myLayer to make layer in myDoc
set myTextFrame to make text frame in myLayer
set contents of myTextFrame to "Hello world!"
end tell

var myDoc = app.documents.add ()

var myLayer = myDoc.layers.add()

var myTextFrame = myLayer.textFrames.add ()
myTextFrame.contents = "Hello world!"

Set appRef = CreateObject("Illustrator.Application")

Set docRef = appRef.Documents.Add

Set layerRef = docRef.Layers.Add

Set frameRef = layerRef.TextFrames.Add
myTextFrame.Contents = "Hello world!"

Naming variables

Your scripts will be easier to read if you create descriptive names for your variables. Variable names such as
x or c aren't helpful when you revisit a script. Better names are those that indicate the data the variable
Contmn&suchastheDocumentormyLayeL

Giving your variable names a standard prefix helps your variables stand out from the objects, commands,
and keywords of your scripting system. For example:

» You could use the prefix “doc” at the beginning of any variables that contain Document objects, such as
docref, or “layer” to identify variables that contain art Layer objects, such as 1ayerRef and
layerRef?2.

» You could use the prefix “my” to add a personal element that separates your variables from script
objects. For example, myDoc or myLayer Of myTextFrame.

All variable names must conform to the following rules:

» Variable names must be a single word (no spaces). Many people use internal capitalization (such as
myFirstPage) or underscore characters (my first page) to create more readable names. The
variable name cannot begin with an underscore character.

CHAPTER 2: Scripting Basics Using Objects 13

AS

JS

» Variable names can contain numbers but cannot begin with a number.
» Variable names cannot contain quotation marks or punctuation other than the underscore character.

» Variable names in JavaScript and VBScript are case sensitive. thissString is not the same as
thisstring Or ThisString. Variable names in AppleScript are not case sensitive.

» Each variable in your script must have a unique name.

Scripting languages put each object in a collection (JS or VBS) or an element (AS), and then assign the
object a number, called the index, within the element or collection. The objects in an element or collection
are identical types of objects. For example, each channel object in your document belongs to a channels
element or collection; each art layer object belongs to an art layers elementor an artLayers
collection.

In English, you could refer to a document by saying, “Give me the first document in the collection.”
Scripting languages allow you to identify an object in similar fashion, using its element or collection name
and index.

» In AS, you refer to the first document in the document s element as document 1.

» InJS, the first document is documents [0], (note the square braces surrounding the index) because
(and this is hard to remember at first) JavaScript begins numbering collection objects at 0.

» InVBS, the first document is Documents (0), (note the parentheses around the index). VBS begins
numbering collection objects at 1.

The following scripts reference the document and layer objects by index in order to add new objects.

NorTE: Because the following script does not use variables, the entire containment hierarchy is required in
each object reference. For example, in the statement that adds a layer, the script must identify the
document to which the layer will be added. To add a text frame to the layer, the script must provide the
index not only of the layer that will contain the frame, but it must also identify the document that contains
the layer.

tell application "Adobe InDesign CS5"

make document

make layer in document 1

make text frame in layer 1 of document 1
end tell

NoTE: Beginning scripters using AppleScript are not encouraged to use element numbers as object
references when the element contains more than one object. For details as to why, see “How elements and
collections number subsequent items” on page 14.

In JavaScript, you indicate an item’s index by using the collection name followed by the index in square
brackets ([1).

app .documents.add ()

app.documents [0] . layers.add()
app.documents [0] .layers [0] .textFrames.add ()

NoTE: Remember, in JS, index numbers within a collection start at 0.

CHAPTER 2: Scripting Basics Using Objects 14

VBS

In VBScript, you indicate an item'’s index by using the collection name followed by the index in
parentheses.

appRef .Documents.Add
appRef .Documents (1) .Layers.Add
appRef .Documents (1) .Layers (1) .TextFrames.Add

How elements and collections number subsequent items

Here’s how the scripting languages handle the automatic numbering if you add a second object to a
collection or element:

» ASassigns number 1 to the new object and renumbers the previously existing object so that it is now
number 2. AppleScript object numbers shift among objects to indicate the object that you worked
with most recently. This can become confusing in longer scripts. Therefore, beginning scripters are
encouraged to use variables as object references and avoid using indexes.

» JS collection numbers are static; they don't shift when you add a new object to the collection. Object
numbering in JS indicates the order in which the objects were added to the collection. Because the
first object you added was assigned the number 0, the next object you add to the collection is number
1; if you add a third object, it is number 2. For example, when you add a document, the document
automatically contains a layer. The layer’s index is [0]. If you add a layer, the new layer’s index is [1]; if
you add a second layer, its index is [2]. If you drag layer [2] to the bottom position in the Layers palette,
it still has index [2].

» VBS collection numbers are also static and the numbering performs exactly as described for JS
collections, with the exception that the first object in the collection is always (1) in VBS.

Tip: In JS and VBS scripts, you'll find index numbers very useful as object references. For example, you may
have several files in which you want to make the background layer white. You can write a script that says
“Open all files in this folder and change the first layer’s color to white!” If you didn't have the capability of
referring to the layers by index, you'd need to include in your script the names of all of the background
layers in all of the files.

NoOTE: Scripts are compulsive organizers. They place objects in elements or collections even when there is
only one object of that type in the entire collection.

NoTE: Objects can belong to more than one collection or element. For example, in Photoshop, art layer
objects belong to the art layers element or collection, and layer set objects belong to the

layer sets element or collection, but both art layer objects and 1ayer set objects belong to the
layers element or collection. Similarly, in InDesign, rectangle objects belong to the rectangles
element or collection and text frame objects belong to the text frames element or collection. However,
both rectangle objects and text frame objects also belong to the page items element or collection,
which contains all sorts of items on a page such as ellipses, graphic lines, polygons, buttons, and other
items.

When you ran your first script and created a new document, the application opened, and then it created a
document. If you wanted to modify that document in the application’s user interface, you could have just
gone to work with your mouse, menus, toolbox, and palettes, because the document was automatically
selected.

CHAPTER 2: Scripting Basics Using Objects

AS

JS

VBS

15

This is true for all objects you create in a script. Until the script does something else, the new object is the

active object, ready for modifications.

Conveniently, many parent objects contain properties that allow you to refer easily to the active object.
(You'll learn about properties in detail a little later in this guide. For now, you can just copy the script

statements in this section and watch how they work without understanding completely why they look the

way they do.)

» In AS, the property that refers to an active object consists of the word current and the object name.

Some examples are:

current document
current layer
current channel
current view

» InJS, the property name is a compound word that combines active with the object name, in
standard JS case usage:

> The first word in the combined term is lower case.
> The second word (and all subsequent words) in the combined term use initial caps.

Some examples are:

activeDocument
activelayer
activeChannel
activeView

» VBSis exactly the same as JS, except that all words in the combined term use initial caps. Some
examples are:

ActiveDocument
Activelayer
ActiveChannel
ActiveView

The following scripts create a document and then use this principle to create a layer in the new document.

tell application "Adobe Illustrator CS5"
make document
make layer in current document

end tell

app .documents.add ()
app.activeDocument.layers.add ()

NOTE: Be sure to type activeDocument without an s at the end.
Set appRef = CreateObject("Illustrator.Application")

docRef .Documents.Add
appRef .ActiveDocument .Layers.Add

NOTE: Be sure to type ActiveDocument without an s at the end.

CHAPTER 2: Scripting Basics Using properties 16

To define or modify a property of an object, you do three things:
1. Name the object.

2. Name the property.

3. Specify the value for the property.

The value can be any of the following datatypes:

» Astring, which is alphanumeric text that is interpreted as text. You enclose strings in quotes ("”).
Strings include such values as an object’s name.

» Numeric, which is a number value that can be used in mathematical operations like addition or
division. Mathematical numbers include the length of one side of a frame or the space between
paragraphs, the opacity percentage, font size, stroke weight, and so on.

Note that some values that look like numbers are really strings. For example, a phone number or social
security number are numbers, but you would format them as strings (enclose them in quotes) because
the data would not be considered mathematical numbers.

Within the numeric category, there are different types of numbers:
> Integer, which is a whole number without any decimal points

> Real, fixed, short, long, or double, which are numbers that can include decimal digits, such as 5.9
or 1.0.

Note: These differences may not seem important now, but keep them in mind for later.

» Avariable. When you use a variable as a property value, you do not enclose the variable in quotes as
you would a string.

» A Boolean value, which is either true or false.
NOTE: In many cases, Boolean values act as an on/off switch.

» A constant value (also called an enumeration), which is a pre-defined set of values from which you can
choose. Using constant values for a property is conceptually similar to using a drop-down menu in an
Adobe application. Constants, and how and when to use them, are explained in “Constant values and

enumerations” on page 20.

> Alist (AS) or an array (JS and VBS).

Some properties require multiple values, such as the page coordinates of a point location (x and y
coordinates), or the boundaries of a text frame or geometric object. Multiple values for a single
property are called a list in AS and an array in JS or VBS. Each language specifies formatting rules.

> The list or array must be enclosed as follows:
In AS, the list is enclosed in curly braces: {}
In JS the array is enclosed in square brackets: []

In VBS, the array is enclosed in parentheses and follows the keyword Array: Array ()

CHAPTER 2: Scripting Basics Using properties 17

D> Values are separated by a comma (,). You can include or omit spaces after the commas; it doesn’t

matter.

AS {3,4,5}0r{"stringl", "string2", "string3"}

JS [3,4,5] Or ["stringl", "string2", "string3"]

VBS Array(3,4,5)0r Array ("stringl", "string2", "string3")

D> Alist or array can included nested lists or arrays, such as a list of page coordinates. In the following
samples, notice that each nested array is enclosed individually, and that the nested arrays are
separated by commas.

AS {{x1, vi}, {x2, vy2}, {x3, y3}}
JS [[x1, y1l, [x2, y2], [x3, y3]]

VBS Array (Array (x1, yl), Array(x2, y2), Array(x3, y3))

AS

To use properties in AS, you use the set command followed by the property name, and then type of
followed by the object reference. The following script defines the name property of the 1ayer object

tell application "Adobe Illustrator CS5"
set myDoc to make document
set myLayer to make layer in myDoc
set name of myLayer to "My New Layer"
end tell

You can set several properties in a single statement using the properties property. You format the
multiple properties as an array, enclosed in curly braces. Within the array, separate each property
name/property value pair with a colon (:). The following script uses properties to define the layer’s name
and visibility state.

tell application "Adobe Illustrator CS5"

set myDoc to make document

set myLayer to make layer in myDoc

set properties of mylLayer to {name:"My New Layer", visible:false}
end tell

NoOTE: Notice in the preceding script that only the string value "My New Layer" is enclosed in quotes. The
value for the visible property, false, may look like a string, but it is a Boolean value. To review value
types, see “Using properties” on page 16.

You can define an object’s properties in the statement that creates the object, as in the following scripts.

tell application "Adobe Illustrator CS5"

set myDoc to make document

set myLayer to make layer in myDoc with properties {name:"My New Layer"}
end tell

tell application "Adobe Illustrator CS5"
set myDoc to make document
set myLayer to make layer in myDoc with properties {name:"My New Layer",
visible:false}
end tell

CHAPTER 2: Scripting Basics Using properties 18

JS

To use a property in JS, you name the object that you want the property to define or modify, insert a
period (.), and then name the property. To specify the value, place an equal sign (=) after the property
name, and then type the value.

var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add()
myLayer.name = "My New Layer"

To define multiple properties, you can write multiple statements:

var myDoc = app.documents.add ()

var myLayer = myDoc.layers.add()
myLayer.name = "My New Layer"
myLayer.visible = false

NorTE: Notice in the preceding script that only the string value "My New Layer" isenclosed in quotes. The
value for the visible property, false, may look like a string, but it is a Boolean value. To review value
types, see “Using properties” on page 16.

JS provides a shorthand for defining multiple properties, called a with statement. To use a with statement,
you use the word with followed by the object whose properties you want to define, enclosing the object
reference in parentheses (()). Do not type a space between with and the first parenthesis. Next, you type
an opening curly brace ({), and then press Enter and type a property name and value on the following
line. To close the with statement, you type a closing curly brace (}).

var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add()
with (myLayer) {
name = "My New Layer"
visible = false

}

Using a with statement saves you the trouble of typing the object reference followed by a period (in this
case, myLayer .) for each property. When using a with statement, always remember the closing curly
bracket.

JS also provides a properties property, which allows you to define several values in one statement. You
enclose the entire group of values in curly braces ({ }). Within the braces, you use a colon (:) to separate a
property name from its value, and separate property name/property value pairs using a comma (,).

var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add()
mylLayer.properties = {name:"My New Layer", visible:false}

VBS

To use properties in VBS, you name the object, insert a period (.), and then name the property. To specify
the value, place an equal sign (=) after the property name, and then type the value.

Set appRef = CreateObject("Illustrator.Application")
Set myDoc = appRef.Documents.Add
Set myLayer = myDoc.Layers.Add

myLayer.Name = "My First Layer"

CHAPTER 2: Scripting Basics Using properties 19

You can define only one property per statement. To define multiple properties, you must write multiple
statements:

Set appRef = CreateObject("Illustrator.Application")
Set myDoc = appRef.Documents.Add
Set myLayer = myDoc.Layers.Add

myLayer.Name = "My First Layer"

myLayer.Opacity = 65

myLayer.Visible = false

NoOTE: Notice in the preceding script that only the string value "My New Layer" is enclosed in quotes. The
value for the visible property, false, may look like a string, but it is a Boolean value. To review value
types, see “Using properties” on page 16.

When defining property values, you can write a script statement with perfect syntax, but the statement
does not produce any results. This can happen when you try to define a property that is not “writable”; the
property is read-only.

For example, the name property of the document object in most Adobe applications is read-only;
therefore, you cannot use a script to define or change the name of an existing document (although you
can use a save as command or method; see “Using methods or commands” on page 23 for information).
So why bother to have a property that you can't set, you might ask. The answer is that read-only properties
are valuable sources of information. For example, you may want to find out what a document’s name is, or
how many documents are in the Documents collection.

Using alert boxes to show a property’s value

A good way to display information in a read-only property is to use the alert box, which is a small dialog
that simply displays information. You can use alert boxes to display the value of any property: read-write or
read-only.

AS

To display an alert box in AS, you type display dialog, and then type the dialog content in parentheses
(0)). To find out how many objects are in an element, use the count command with any element name.

NoTE: The element name is the plural form of the object. For example, the document object’s element is
the documents object.

The following script displays an alert box that tells you how many documents are in the documents
element, then adds a document and displays a new alert with the updated number.

tell application "Adobe Photoshop CS5"
display dialog (count documents)
set myDoc to make document
display dialog (count documents)
end tell

To get a string value to display in an alert box, you must store the string value in a variable. The following
script converts the document name to a variable named myName, and then displays the value of myName.

tell application "Adobe Photoshop CS5"
set myDoc to make document
set myName to name of myDoc

CHAPTER 2: Scripting Basics Using properties 20

display dialog myName
end tell

JS

To display an alert box in JS, you use the alert () method by typing alert, and then typing the dialog
content in parentheses (()). Do not type a space between alert and the first parenthesis. To find out how
many objects are in a collection, use the (read-only) 1ength property of any collection object. The
following script displays an alert box that tells you how many documents are in the documents collection,
then adds a document and displays a new alert with the updated number.

NoTE: The collection object name is the plural form of the object. For example, the document object’s
collection object is the documents object.

alert (app.documents.length)
var myDoc = app.documents.add ()
alert (app.documents.length)

The following script displays the document’s name in an alert box.

var myDoc = app.documents.add ()
alert (myDoc.name)

VBS

To display an alert box in VBS, you use the MsgBox method by typing MsgBox, and then typing the dialog
content in parentheses (()). Do not type a space between MsgBox and the first parenthesis. To find out
how many objects are in a collection, use the (read-only) count property of any collection object. The
following script displays an alert box that tells you how many documents are in the bocument s collection,
then adds a document and displays a new alert with the updated number.

NorTE: The collection object is the plural form of the object. For example, the bocument object’s collection
object is the Documents object.

Set appRef = CreateObject ("Photoshop.Application")
MsgBox (appRef .Documents. Count)
Set myDoc = appRef.Documents.Add

MsgBox (appRef . Documents. Count)

The following script displays the document’s name in an alert box.

Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Documents.Add
MsgBox (myDoc .Name))

Some properties’ values are pre-defined by the application. For example, in most applications, the page
orientation can be either landscape or portrait. The application accepts only one of these two values; it will
not accept “vertical” or “upright” or “horizontal” or “on its side.” To make sure your script provides an
acceptable value for a document’s page orientation property, the property has been written so that it can
accept only a pre-defined value.

In scripting, these pre-defined values are called constants or enumerations.

Using a constant or an enumeration is similar to using a drop-down list in the application’s user interface.

CHAPTER 2: Scripting Basics Using properties 21

NortE: To find whether you must use an enumeration for a property’s value, look up the property in one of
the scripting references provided by Adobe. For information, see Chapter 3, “Finding an Object’s
Properties and Methods.”

AS

In AS, you use constants as you would any other property definition. Do not enclose the constant in
quotes. The following script uses the constant value dark green to set the layer color of a new layer.
tell application "Adobe Illustrator CS5"

set myDoc to make document

set myLayer to make layer in myDoc

set layer color of mylLayer to dark green
end tell

NoOTE: If dark green were a string value rather than a constant, the value would be enclosed in quotes:

set layer color of mylLayer to "dark green"

JS

In JS, you type the enumeration name, a period (.), and then the enumeration value. You must use the
exact spelling and capitalization as defined in the scripting references provided by Adobe. Formatting is
different in different Adobe applications. For example:

» InInDesign:

> Each enumeration begins with an upper case letter, and all words within the combined term also
begin with an upper case letter.

> The enumeration value begins with a lower case letter.
The following example uses the uTcolor enumeration to set the layer color to dark green.

var myDoc = app.documents.add ()
var myLayer = mydoc.layers.add()

myLayer.layerColor = UIColor.darkGreen

» Inlllustrator:

> Each enumeration begins with an upper case letter, and all words within the combined term also
begin with an upper case letter.

> Some enumeration values begin with an upper case letter and then use lower case letters. Others
use all upper case. You must be sure to use the value exactly as it appears in the scripting
reference.

The following example uses the RulerUnits enumeration to set the default unit to centimeters.
var myDoc = app.documents.add ()

myDoc.rulerUnits = RulerUnits.Centimeters

The next script uses the BlendModes enumeration, whose values are expressed in all upper case
letters.

CHAPTER 2: Scripting Basics Using properties 22

AS

JS

VBS

var myDoc = app.documents.add ()
var myLayer = myDoc.layers.add()

myLayer.blendingMode = BlendModes.COLORBURN

» In Photoshop:

> Each enumeration begins with an upper case letter, and all words within the combined term also
begin with an upper case letter.

> Enumeration values are all upper case.
The following example uses the Layerkind enumeration to make the layer a text layer.

var myDoc = app.documents.add ()
var myLayer = mydoc.artLayers.add()

myLayer.kind = LayerKind.TEXT

VBS

In VBS, you use numeric values for constants.

Set appRef = CreateObject ("Photoshop.Application")
Set docRef = appRef.Documents.Add
Set layerRef = docRef.ArtLayers.Add

layerRef .Kind = 2

You can use variables to contain property values. This can help you update a script quickly and accurately.
For example, you may have a publication in which all photos are 3 x 5 inches. If you use a variable to set the
photo height and the photo width, and then the measurements change, you only have to change the
values in one variable, rather than the measurements for each photo in the document.

The following script creates variables to contain the values of the document’s width and height, and then
uses the variables as values in the statement that changes the width and height.

tell application "Adobe Illustrator CS5"

set myDoc to make document with properties {height:10, width:7}

set docHeight to height of myDoc

set docWidth to width of myDoc

set myDoc with properties {height:docHeight - 2, width:docWidth - 2}
end tell

var myDoc = app.documents.add (7, 10)
var docHeight = myDoc.height
var docWidth = myDoc.width
myDoc.resizeCanvas ((docHeight - 2), (docWidth - 2))

Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Documents.Add (7, 10)

docHeight = myDoc.Height

docWidth = myDoc.Width

myDoc.ResizeCanvas docWidth - 2, docHeight - 2

CHAPTER 2: Scripting Basics Using methods or commands 23

AS

JS

VBS

NoTE: The MsgBox method does not work when you open a script from the Scripts menu in some
Adobe applications. To properly display the message box, double-click the script file in Windows Explorer®.

Commands (in AS) and methods (in VBS and JS) are directions you add to a script to perform tasks or
obtain results. For example, you could use the print/print () /Printout command/method to print a
document.

AS commands appear at the beginning of a script statement as an imperative verb. The command is
followed by a reference to the object upon which you want the command to act.

The following script prints the active document:

tell application "Adobe InDesign CS5"
print current document
end tell

You insert methods at the end of JS statements. You must place a period before the method name, and
then follow the method name with parentheses (()).

app.activeDocument.print ()

You insert methods at the end of VBS statements. You must place a period before the method name.

Set appRef = CreateObject ("Photoshop.Application")
appRef .ActiveDocument .PrintOut

Some commands or methods require additional data, called arguments or parameters. Commands or
methods can also have optional parameters.

Required parameters

The following scripts use the merge command, which requires some indication of the layers you want to
merge into the selected layer. Just like properties, command parameters are enclosed in curly braces ({ }).
However, you include only the parameter value, and not the parameter name, within the braces.

NorTE: This script is for InDesign. There is no merge operation in lllustrator. To modify this script for
Photoshop, note that a layer is called art 1ayer in AS; and layers are called artLayers in JS or ArtLayers
in VBS.

AS

tell application "Adobe InDesign CS5"
set myDoc to make document

set myLayer to make layer in myDoc
set myLayer2 to make layer in myDoc

merge mylLayer2 with {myLayer}
end tell

CHAPTER 2: Scripting Basics Using methods or commands 24

JS
The method parameter is enclosed in the parentheses that follow the method name.
var myDoc = app.documents.add ()

var myLayer = myDoc.layers.add()
var myLayer2 = myDoc.layers.add ()

myLayer2.merge (myLayer)
VBS

Notice that the method parameter is enclosed in parentheses after the method name. Do not type a space
before the first parenthesis.

Set appRef = CreateObject ("InDesign.Application")
Set myDoc = appRef.Documents.Add

Set myLayer = myDoc.Layers.Add
Set myLayer2 = myDoc.Layers.Add

myLayer2.Merge (myLayer)
Multiple parameters

When you define more than one parameter for a command or method, you must follow specific rules.
AS

There are two types of parameters for AS commands:

» Adirect parameter, which defines the direct object of the action performed by the command

» Labeled parameters, which are any parameters other than direct parameters

The direct parameter must follow the command directly. In the following statement, the command is make
and the direct parameter is document.

make document

You can insert labeled parameters in any order. The following script creates two layers, and defines the
location and name of each layer. Notice that, in the statements that create the layers, the 1ocation and
name parameters appear in different orders.

tell application "Adobe InDesign CS5"
set myDoc to make document
tell myDoc
set myLayer to make layer at beginning of myDoc with properties {name:"Layl"}
set myLayer2 to make layer with properties {name:"Lay2"} at end of myDoc
end tell
end tell

JS

In JS, you must enter parameter values in the order they are listed in the scripting reference resources so
that the script compiler knows which value defines which parameter.

CHAPTER 2: Scripting Basics Tell statements (AS only) 25

NoTE: For information on scripting reference resources, see Chapter 3, “Finding an Object’s Properties and
Methods.”

To skip an optional parameter, type the placeholder undef ined. The following statement creates a
Photoshop CS5 document whose width is 4000 pixels, height is 5000 pixels, resolution is 72, name is “My
Document,” and document mode is bitmap.

app.documents.add (4000, 5000, 72, "My Document", NewDocumentMode.BITMAP)

The next statement creates an identical document except that the resolution is left undefined.

app.documents.add (4000, 5000, undefined, "My Document", NewDocumentMode.BITMAP)

NoOTE: Use the undefined placeholder only to “reach” the parameters you want to define. The following
statement defines only the document’s height and width; placeholders are not needed for subsequent
optional parameters.

app.documents.add (4000, 5000)

VBS

In VBS, you must enter parameter values in the order they are listed so that the script compiler knows
which value defines which parameter.

To skip an optional parameter, type the placeholder undefined. The following statement creates a
Photoshop CS5 document whose width is 4000 pixels, height is 5000 pixels, resolution is 72, name is “My
Document,” and document mode is bitmap.

Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Documents.Add (4000, 5000, 72, "My Document", 5)

The next statement creates an identical document except the resolution is left undefined.

Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Documents.Add (400, 500, undefined, "My Document", 5)

NoOTE: Use the undefined placeholder only to “reach” the parameters you want to define. The following
statement defines only the document’s height and width; placeholders are not needed for subsequent
optional parameters.

Set appRef = CreateObject ("Photoshop.Application")
Set myDoc = appRef.Documents.Add (4000, 5000)

The undefined placeholder is not case-sensitive.

You may have noticed that AppleScript examples start and end with the statements:
tell application "Application Name"

end tell

A tell statement names the default object that performs all commands contained within the statement.
In the preceding sample, the tel1 statement targets the application object. Therefore, any commands

CHAPTER 2: Scripting Basics Notes about variables 26

AS

JS

contained within the statement must be performed by the application object unless another object is
explicitly named in a script statement within the tel1l statement.

The following script carefully outlines the full containment hierarchy of each object to indicate which
object the command must work upon:

tell application "Adobe InDesign CS5"
set myDoc to make document
set myLayer to make layer in myDoc
set myLayer2 to make layer in myDoc
end tell

You can create a shortcut by changing the command target. To do so, you add a nested tell statement.
The following script performs the exact same operation as the previous script. Because the nested tell
statement targets the document object, it is not necessary to refer to the document object in the
statements that create the layers.

tell application "Adobe InDesign CS5"
set myDoc to make document
tell myDoc
set myLayer to make layer
set myLayer2 to make layer
end tell
end tell

Notice that each tel1l statement must be closed with its own end tell statement.

You can nest as many tell statements as you wish.

This section provides additional information about using variables.

You can change a variable’s value at any time. To do so, you simply use the variable name followed by the
assignment operator (to in AS; = in JS or VBS) and the new value. The following scripts create the variable
layerRef to contain a new layer, and then immediately create a second layer and assign it as layerRef’s
new value.

To change a variable’s value in AS, you use the set command.

tell application "Adobe Illustrator CS5"
set docRef to make document
set layerRef to make layer in myDoc with properties {name:"First Layer"}
set layerRef to make layer in myDoc with properties {name:"Second Layer"}
end tell

To change a variable’s value in JS, you use the variable name followed an equal sign (=) and the new value.
Do not begin the reassignment statement with var; you use var only when creating a new variable.

var docRef = app.documents.add()

var layerRef = myDoc.layers.add()
layerRef .name = "First Layer"
layerRef = myDoc.layers.add ()

CHAPTER 2: Scripting Basics Making script files readable 27

VBS

AS

JS

VBS

AS

layerRef .name = "Second Layer"

To change a variable’s value in VBS, you use the set command.

Set appRef = CreateObject("Illustrator.Application")
Set docRef = appRef.Documents.Add
Set layerRef = docRef.Layers.Add

layerRef .Name = "First Layer"
layerRef = docRef.Layers.Add
layerRef .Name = "Second Layer"

You can also create variables to contain existing objects.

tell application "Adobe Photoshop CS5"
set myDoc to active document
end tell

var myDoc = app.activeDocument

Set appRef = CreateObject("Illustrator.Application")
Set docRef = appRef.ActiveDocument

This section covers two options that help make your script files more readable:
» Comments

» Line breaks

A script comment is text that the scripting engine ignores when it executes your script.

Comments are very useful when you want to document the operation or purpose of a script (for yourself
or for someone else). Most programmers, even the most advanced, take the time to insert comments for
almost every element in a script. Comments may not seem important to you when you are writing your
scripts, but you will be glad you included comments a month or a year later when you open a script and
wonder what you were trying to do and why.

To comment all or part of a single line in an AS, type two hyphens (- -) at the beginning of the comment. To
comment multiple lines, surround the comment with (* and *).

tell application "Adobe InDesign CS5"
--This is a single-line comment
print current document --this is a partial-line comment
--the hyphens hide everything to their right from the scripting engine
(* This is a multi-line
comment, which is completely
ignored by the scripting engine, no matter how
many lines it contains.
The trick is to remember to close the comment.
If you donit the rest of your script is

CHAPTER 2: Scripting Basics Making script files readable 28

JS

VBS

AS

hidden from the scripting engine!*)
end tell

NoOTE: The only thing this script does is print the current document.

To comment all or part of a single line in JS, type two forward slashes (//) at the beginning of the
comment. To comment multiple lines, surround the comment with /* and */.

//This is a single-line comment
app.activeDocument .print () //this part of the line is also a comment

/* This is a multi-line
comment, which is completely
ignored by the scripting engine, no matter how
many lines it contains.
Don?t forget the closing asterisk and slash
or the rest of your script will be commented out...*/

NorTE: The only thing this script does is print the active document.

In VBS, type rRem (for “remark”) or ' (a single straight quote) at the beginning of the comment. VBS does not
support comments that span more than one line. To comment several lines in a row, start each line with
either comment format.

'This is a comment.

Set appRef = CreateObject ("Photoshop.Application")

Rem This is also a comment.

appRef .ActiveDocument .PrintOut 'This part of the line is a comment.

' This is a multi-line

' comment that requires

' a comment marker at the beginning

' of each line.

Rem This is also a multi-line comment. Generally, multi-line

Rem comments in VBS are easier for you to identify (and read) in your scripts
Rem if they begin with a single straight quote (') rather than if they begin
Rem with Rem, because Rem can look like any other text in the script

' The choice is yours but isn?t this more easily

' identifiable as a comment than the preceding

' four lines were?

NorTE: The only thing this script does is print the active document.

In both AppleScript and VBScript, a carriage return at the end of a line signals the end of a statement.
When your script lines are too long to fit on one line, you can use special continuation characters—
characters that break a line but direct the script to read the broken line as a legitimate instruction.

NOTE: You can also expand the scripting editor window to continue the statement on a single line.
Type the character — (Option+Return) to break a long line but continue the statement.

tell application "Adobe InDesign CS5"
set myDoc to make document
set myLayer to make layer in myDoc with properties {name:"My First Layer"} at the’—
beginning of myDoc (* without the line break character, AS would consider this
line an incomplete statement¥)
(* note that line continuation characters are not required in a multi-line comment

CHAPTER 2: Scripting Basics